NDK_GARCHM_RESID

Last Modified on 07/15/2016 9:58 am CDT

- C/C++
- .Net

i

intstdcall NDK_GARCHM_RESI	_stdcall NDK_GARCHM_RESID(double * pData,	
	size_t	nSize,
	double	mu,
	double	flambda,
	const double *	[*] Alphas,
	size_t	p,
	const double *	^r Betas,
	size_t	q,
	WORD	nInnovationType,
	double	nu,
	WORD	retType
)	

Returns an array of cells for the standardized residuals of a given GARCH model.

Returns

status code of the operation

Return values

NDK_SUCCESS Operation successful NDK_FAILED Operation unsuccessful. See <u>Macros</u> for full list.

Deprecated:

this function is being replaced by NDK_GARCHM_FITTED()

Parameters

[in] pData	is the univariate time series data (a one dimensional array).	
[in] nSize	is the number of observations in pData.	
[in] mu	is the GARCH model conditional mean (i.e. mu).	
[in] flambda	is the volatility coefficient for the mean. In finance, lambda is referenced	
	as the risk premium.	
[in] Alphas	are the parameters of the ARCH(p) component model (starting with the	
	lowest lag).	
[in] p	is the number of elements in Alphas array	
[in] Betas	[in] Betas are the parameters of the GARCH(q) component model (starting with the	
	lowest lag).	
[in] q	is the number of elements in Betas array	
[in] nInnovationType is the probability distribution function of the innovations/residuals		

(see INNOVATION_TYPE)

- INNOVATION_GAUSSIAN Gaussian Distribution (default)
- INNOVATION_TDIST Student's T-Distribution,
- INNOVATION_GED Generalized Error Distribution (GED)

[in] nu	is the shape factor (or degrees of freedom) of the innovations/residuals
	probability distribution function.
[in] retType	is a switch to select a residuals-type:raw or standardized.
	see RESID_RETVAL_FUNC

Remarks

- 1. The underlying model is described here.
- 2. The time series is homogeneous or equally spaced.
- 3. The time series may include missing values (e.g. #N/A) at either end.
- 4. The standardized residuals have a mean of zero and a variance of one (1).
- 5. The GARCH-M model's standardized residuals is defined as: $[epsilon_t = \frac{a_t}{\frac{1}{\sqrt{a_t}} |$
 - $[a_t = x_t \ (mu \ (sigma_t)]$ Where:
 - \(\epsilon\) is the GARCH-M model's standardized residual at time t.
 - $\circ \ \ (a_t\)$ is the GARCH-M model's residual at time t.
 - $\circ \ (x_t)$ is the value of the time series at time t.
 - \(\mu\) is the GARCH-M mean.
 - \(\sigma_t\) is the GARCH-M conditional volatility at time t.
 - \(\lambda\) is the volatility coefficient in the conditional mean.
- 6. The number of parameters in the input argument alpha determines the order of the ARCH component model.
- 7. The number of parameters in the input argument beta determines the order of the GARCH component model.

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

int NDK_GARCHM_RESID(double[] pData,

UIntPtr nSize, double mu, double flambda, double[] Alphas, UIntPtr p, Namespace: NumXLAPI Class: SFSDK Scope: Public Lifetime: Static double[] Betas, UIntPtr q, short nInnovationType, double nu, short retType)

Returns an array of cells for the standardized residuals of a given GARCH model.

Return Value

a value from NDK_RETCODE enumeration for the status of the call.

NDK_SUCCESS operation successful Error Error Code

Deprecated:

this function is being replaced by NDK_GARCHM_FITTED()

Parameters

[in] pData	is the univariate time series data (a one dimensional array).
[in] nSize	is the number of observations in pData.
[in] mu	is the GARCH model conditional mean (i.e. mu).
[in] flambda	is the volatility coefficient for the mean. In finance, lambda is referenced
	as the risk premium.
[in] Alphas	are the parameters of the ARCH(p) component model (starting with the
	lowest lag).
[in] p	is the number of elements in Alphas array
[in] Betas	are the parameters of the GARCH(q) component model (starting with the
	lowest lag).
[in] q	is the number of elements in Betas array
[in]nlnnovationTy	pe is the probability distribution function of the innovations/residuals
	(see INNOVATION_TYPE)
	 INNOVATION_GAUSSIAN Gaussian Distribution (default)
	 INNOVATION_TDIST Student's T-Distribution,
	 INNOVATION_GED Generalized Error Distribution (GED)
[in] nu	is the shape factor (or degrees of freedom) of the innovations/residuals
	probability distribution function.
[in] retType	is a switch to select a residuals-type:raw or standardized.
	see RESID_RETVAL_FUNC

Remarks

- 1. The underlying model is described here.
- 2. The time series is homogeneous or equally spaced.
- 3. The time series may include missing values (e.g. #N/A) at either end.

- 4. The standardized residuals have a mean of zero and a variance of one (1).
- 5. The GARCH-M model's standardized residuals is defined as: \[\epsilon_t = \frac{a_t}{\sigma_t} \] \
 - $[a_t = x_t \ (u ($
 - \(\epsilon\) is the GARCH-M model's standardized residual at time t.
 - $\circ \ \ (a_t\)$ is the GARCH-M model's residual at time t.
 - (x_t) is the value of the time series at time t.
 - \(\mu\) is the GARCH-M mean.
 - \(\sigma_t\) is the GARCH-M conditional volatility at time t.
 - \(\lambda\) is the volatility coefficient in the conditional mean.
- 6. The number of parameters in the input argument alpha determines the order of the ARCH component model.
- 7. The number of parameters in the input argument beta determines the order of the GARCH component model.

Exceptions

Exception Type	Condition
None	N/A

Requirements

Namespace	NumXLAPI
Class	SFSDK
Scope	Public
Lifetime	Static
Package	NumXLAPI.DLL

Examples

References

Hamilton, J .D.; Time Series Analysis, Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740 See Also [template("related")]