NDK GARCHM FITTED

Last Modified on 07/15/2016 9:50 am CDT

- C/C++
- .Net

```
int stdcall NDK GARCHM FITTED(double *
                                                pData,
                                  size t
                                                nSize,
                                  double
                                                mu,
                                  double
                                                flambda,
                                  const double * Alphas,
                                  size_t
                                                p,
                                  const double * Betas,
                                  size_t
                                                q,
                                  WORD
                                                nInnovationType,
                                  double
                                                nu,
                                  WORD
                                                retType
                                 )
```

Returns an array of cells for the fitted values (i.e. mean, volatility and residuals)

Returns

status code of the operation

Return values

NDK SUCCESS Operation successful

NDK FAILED Operation unsuccessful. See Macros for full list.

Parameters

[in] pData is the univariate time series data (a one dimensional array).

[in] **nSize** is the number of observations in pData.

is the GARCH model conditional mean (i.e. mu).

[in] **flambda** is the volatility coefficient for the mean. In finance, lambda is referenced

as the risk premium.

[in] **Alphas** are the parameters of the ARCH(p) component model (starting with the

lowest lag).

[in] **p** is the number of elements in Alphas array

[in] **Betas** are the parameters of the GARCH(q) component model (starting with the

lowest lag).

[in] **q** is the number of elements in Betas array

[in] nInnovationType is the probability distribution function of the innovations/residuals

(see INNOVATION TYPE)

- INNOVATION_GAUSSIAN Gaussian Distribution (default)
- INNOVATION_TDIST Student's T-Distribution,
- INNOVATION GED Generalized Error Distribution (GED)

[in] nu is the shape factor (or degrees of freedom) of the innovations/residuals

probability distribution function.

[in] retType is a switch to select a output type (see FIT_RETVAL_FUNC)

Remarks

- 1. The underlying model is described here.
- 2. The time series is homogeneous or equally spaced.
- 3. The time series may include missing values (e.g. #N/A) at either end.
- 4. The number of parameters in the input argument alpha determines the order of the ARCH component model.
- 5. The number of parameters in the input argument beta determines the order of the GARCH component model.

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

```
Namespace: NumXLAPI
int NDK_GARCHM_FITTED(double[] pData,
                                                                          Class: SFSDK
                        UIntPtr nSize,
                                                                         Scope: Public
                        double mu,
                                                                       Lifetime: Static
                        double flambda,
                        double[] Alphas,
                        UlntPtr p,
                        double[] Betas,
                        UIntPtr q,
                        short
                               nInnovationType,
                        double nu,
                        short
                                retType
```

Returns an array of cells for the fitted values (i.e. mean, volatility and residuals)

Return Value

a value from NDK_RETCODE enumeration for the status of the call.

NDK_SUCCESS operation successful

Error Code

Parameters

[in] **pData** is the univariate time series data (a one dimensional array).

[in] **nSize** is the number of observations in pData.

[in] **mu** is the GARCH model conditional mean (i.e. mu).

[in] **flambda** is the volatility coefficient for the mean. In finance, lambda is referenced

as the risk premium.

[in] **Alphas** are the parameters of the ARCH(p) component model (starting with the

lowest lag).

[in] **p** is the number of elements in Alphas array

[in] **Betas** are the parameters of the GARCH(q) component model (starting with the

lowest lag).

[in] **q** is the number of elements in Betas array

[in] nInnovationType is the probability distribution function of the innovations/residuals

(see INNOVATION TYPE)

• INNOVATION_GAUSSIAN Gaussian Distribution (default)

• INNOVATION_TDIST Student's T-Distribution,

• INNOVATION_GED Generalized Error Distribution (GED)

is the shape factor (or degrees of freedom) of the innovations/residuals

probability distribution function.

[in]retType is a switch to select a output type (see FIT_RETVAL_FUNC)

Remarks

1. The underlying model is described here.

2. The time series is homogeneous or equally spaced.

3. The time series may include missing values (e.g. #N/A) at either end.

4. The number of parameters in the input argument - alpha - determines the order of the ARCH component model.

5. The number of parameters in the input argument - beta - determines the order of the GARCH component model.

Exceptions

Exception Type	Condition
None	N/A

Requirements

Namespace	NumXLAPI
Class	SFSDK
Scope	Public

Lifetime	Static
Package	NumXLAPI.DLL

Examples

References

Hamilton, J.D.; Time Series Analysis, Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]