NDK EGARCH VALIDATE

Last Modified on 01/06/2017 4:21 pm CST

- C/C++
- .Net

Examines the model's parameters for stability constraints (e.g. stationary, positive variance, etc.).

Returns

status code of the operation

Return values

NDK_SUCCESS Operation successful

NDK_FAILED Operation unsuccessful. See Macros for full list.

Parameters

[in]	mu	is the GARCH model conditional mean (i.e. mu).	
[in]	Alphas	are the parameters of the ARCH(p) component model (starting with	
		the lowest lag).	
[in]	p	is the number of elements in Alphas array	
[in,out] Gammas	are the leverage parameters (starting with the lowest lag).	
[in]	g	is the number of elements in Gammas. Must be equal to (p-1).	
[in]	Betas	are the parameters of the GARCH(q) component model (starting with	
		the lowest lag).	
[in]	q	is the number of elements in Betas array	
[in]	nInnovationType is the probability distribution function of the innovations/residuals		
		(see INNOVATION_TYPE)	
		 INNOVATION_GAUSSIAN Gaussian Distribution (default) 	
		 INNOVATION_TDIST Student's T-Distribution, 	
		 INNOVATION_GED Generalized Error Distribution (GED) 	
[in]	nu	is the shape factor (or degrees of freedom) of the	

innovations/residuals probability distribution function.

Remarks

- 1. The underlying model is described here.
- 2. The time series is homogeneous or equally spaced.
- 3. The number of gamma-coefficients must match the number of alpha-coefficients.
- 4. The number of parameters in the input argument alpha determines the order of the ARCH component model.
- 5. The number of parameters in the input argument beta determines the order of the GARCH component model.
- 6. EGARCH_CHECK examines the model's coefficients for:
 - Coefficients are all positive

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

Namespace: NumXLAPI

Class: SFSDK Scope: Public Lifetime: Static

Examines the model's parameters for stability constraints (e.g. stationary, positive variance, etc.).

Return Value

a value from NDK_RETCODE enumeration for the status of the call.

NDK_SUCCESS operation successful

Error Code

Parameters

[in] **mu** is the GARCH model conditional mean (i.e. mu).

[in] Alphas are the parameters of the ARCH(p) component model (starting with

the lowest lag).

[in] is the number of elements in Alphas array [in,out] **Gammas** are the leverage parameters (starting with the lowest lag). [in] **Betas** are the parameters of the GARCH(q) component model (starting with the lowest lag). [in] is the number of elements in Betas array q [in] nInnovationType is the probability distribution function of the innovations/residuals (see INNOVATION_TYPE) • INNOVATION_GAUSSIAN Gaussian Distribution (default) • INNOVATION TDIST Student's T-Distribution, INNOVATION_GED Generalized Error Distribution (GED) is the shape factor (or degrees of freedom) of the [in] nu innovations/residuals probability distribution function.

Remarks

- 1. The underlying model is described here.
- 2. The time series is homogeneous or equally spaced.
- 3. The number of gamma-coefficients must match the number of alpha-coefficients.
- 4. The number of parameters in the input argument alpha determines the order of the ARCH component model.
- 5. The number of parameters in the input argument beta determines the order of the GARCH component model.
- 6. EGARCH_CHECK examines the model's coefficients for:
 - Coefficients are all positive
 - 6. Special cases: By definition, \(\hat{\rho}(0) \equiv 1.0\)

Exceptions

Exception Type	Condition
None	N/A

Requirements

Namespace	NumXLAPI
Class	SFSDK
Scope	Public
Lifetime	Static
Package	NumXLAPI.DLL

References

Hamilton, J.D.; Time Series Analysis, Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]