NDK_DFT

Last Modified on 07/07/2016 12:11 pm CDT

- C/C++
- .Net

Calculates the discrete fast Fourier transformation for amplitude and phase.

Returns

status code of the operation

Return values

NDK_SUCCESSOperation successfulNDK_FAILEDOperation unsuccessful. See Macros for full list.

Parameters

[in] X	is the univariate time series data (a one dimensional array).
[in] N	is the number of observations in X.
[out]retAm	is an array of the amplitudes of the fourier transformation components
[out]retPh	ase is an array of the phase angle (radian) of the Fourier transformation
	components.
[in] M	is the number of spectrum components (i.e. size of amp and phase)

Remarks

- 1. The input time series may include missing values (e.g. NaN) at either end, but they will not be included in the calculations.
- 2. The input time series must be homogeneous or equally spaced.
- 3. The first value in the input time series must correspond to the earliest observation.
- The frequency component order, \(k\), must be a positive number less than \(N\), or the error (#VALUE!) is returned.
- 5. The DFT returns the phase angle in radians, i.e. $(0 \ t \ bi)$.
- The discrete Excel Fourier transformation (DFT) is defined as follows: \[X_k = \sum_{j=0}^{N-1} x_j e^{-\frac{1}{N} j k} \] Where:
 - $\circ\ \\$ (k\) is the frequency component
 - $(x_0,...,x_{N-1})$ are the values of the input time series

- 7. The Cooley-Tukey radix-2 decimation-in-time fast Excek Fourier transform (FFT) algorithm divides a DFT of size N into two overlapping DFTs of size \(\frac{N}{2}\) at each of its stages using the following formula: \[X_{k} = \begin{cases} E_k + \alpha \cdot O_k & \text{ if } k \lt \dfrac{N}{2} \\ E_{\left (k-\frac{N}{2} \right)} \ \alpha \cdot O_{\left (k-\frac{N}{2} \right)} & \text{ if } k \tex
 - (E_k) is the DFT of the even-indicied values of the input time series, $(x_{2m} + (x_0, x_2, (100, x_1)))$
 - \(O_k\) is the DFT of the odd-indicied values of the input time series, \(x_{2m+1} \left(x_1, x_3, \ldots, x_{N-2}\right)\)
 - $(\ e^{ (\lambda / N \)}),$
- 8. The unit frequency of the DFT is \(\frac{2\pi}{N}\), where \(N\) is the number of non-missing observations.

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

Examples

int NDK_DFT(double[]	pData,
UIntPtr	nSize,
short	component,
short	argRetType,
out double retVal	
)	

Namespace: NumXLAPI Class: SFSDK Scope: Public Lifetime: Static

Calculates the discrete fast Fourier transformation for amplitude and phase.

Returns

status code of the operation

Return values

NDK SUCCESS Operation successful

NDK_FAILED Operation unsuccessful. See <u>Macros</u> for full list.

Parameters

[in] pData	is the univariate time series data (a one dimensional array).	
[in] nSize	is the number of observations in pData.	
[out] component	is an array of the amplitudes of the fourier transformation components	
[out] argRetType is an array of the phase angle (radian) of the Fourier transformation		
	components.	
[in] retVal	is the number of spectrum components (i.e. size of amp and phase)	

Remarks

- 1. The input time series may include missing values (e.g. NaN) at either end, but they will not be included in the calculations.
- 2. The input time series must be homogeneous or equally spaced.
- 3. The first value in the input time series must correspond to the earliest observation.
- The frequency component order, \(k\), must be a positive number less than \(N\), or the error (#VALUE!) is returned.
- 5. The DFT returns the phase angle in radians, i.e. \(0 \lt \phi \lt 2 \times \pi\).
- The discrete Excel Fourier transformation (DFT) is defined as follows: \[X_k = \sum_{j=0}^{N-1} x_j e^{-\frac{1}{N} j k} \] Where:

 - $(x_0,...,x_{N-1})$ are the values of the input time series
- 7. The Cooley-Tukey radix-2 decimation-in-time fast Excek Fourier transform (FFT) algorithm divides a DFT of size N into two overlapping DFTs of size \(\frac{N}{2}\) at each of its stages using the following formula: \[X_{k} = \begin{cases} E_k + \alpha \cdot O_k & \text{ if } k \lt \dfrac{N}{2} \\ E_{\left (k-\frac{N}{2} \right)} \ \alpha \cdot O_{\left (k-\frac{N}{2} \right)} & \text{ if } k \tex
 - $\circ \ (E_k) \ is the DFT of the even-indicied values of the input time series, <math display="inline">(x_{2m} \ (x_0, x_2, \ (dots, x_{N-2})))$
 - \(O_k\) is the DFT of the odd-indicied values of the input time series, \(x_{2m+1} \left(x_1, x_3, \ldots, x_{N-2}\right)\)
 - $(\ e^{ (\lambda / N)}))$
- The unit frequency of the DFT is \(\frac{2\pi}{N}\), where \(N\) is the number of non-missing observations.

Exceptions

Exception Type	Condition
None	N/A

equirements				
	Namespace	NumXLAPI		
	Class	SFSDK		

Re

Namespace	NumXLAPI
Class	SFSDK
Scope	Public
Lifetime	Static
Package	NumXLAPI.DLL

Examples

References

Hamilton, J .D.; Time Series Analysis , Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]