NDK_CHOWTEST

Last Modified on 04/20/2016 12:31 pm CDT

- C/C++
- .Net

intstdcall NDK_CHOWTES	T(double **	XX1,
	size_t	Μ,
	double *	Y1,
	size_t	N1,
	double **	XX2,
	double *	Y2,
	size_t	N2,
	LPBYTE	mask,
	size_t	nMaskLen,
	double	intercept,
	TEST_RETUR	l retType,
	double *	retVal
)	

Returns the p-value of the regression stability test (i.e. whether the coefficients in two linear regressions on different data sets are equal).

Returns

status code of the operation

Return values

NDK_SUCCESSOperation successfulNDK_FAILEDOperation unsuccessful. See Macros for full list.

Parameters

[in] XX1	is the independent variables data matrix of the first data set (two dimensional).
[in] M	is the number of variables (columns) in XX1 and XX2.
[in] Y1	is the response or the dependent variable data array for the first data set (one
	dimensional array).
[in] N1	is the number of observations (rows) in the first data set.
[in] XX2	is the independent variables data matrix of the second data set, such that each
	column represents one variable.
[in] Y2	is the response or the dependent variable data array of the second data set
	(one dimensional array).
[in] N2	is the number of observations (rows) in the second data set.
[in] mask	is the boolean array to select a subset of the input variables in X. If NULL, all
	variables in X are included.
[in] nMaskLe	n is the number of elements in the mask, which must be zero or equal to M.

[in] intercept is the regression constant or the intercept value (e.g. zero). If missing, an

intercept is not fixed and will be computed from the data set.

[in] **retType** is a switch to select the return output

Method	Value	Description
TEST_PVALUE	1	P-Value
TEST_SCORE	2	Test statistics (aka score)
TEST_CRITICALVALUE	3	Critical value.

[in] **retVal** is the calculated Chow test statistics.

Remarks

- The data sets may include missing values.
- Each column in the explanatory (predictor) matrix corresponds to a separate variable.
- Each row in the explanatory matrix and corresponding dependent vector correspond to one observation.
- Observations (i.e. row) with missing values in X or Y are removed.
- Number of observation of each data set must be larger than the number of explanatory variables.
- In principle, the Chow test constructs the following regression models:
 - Model 1 (Data set 1): \[y_t = \alpha_1 + \beta_{1,1}\times X_1 + \beta_{2,1}\times X_2 + \cdots + \epsilon\]
 - Model 2 (Data set 2): $[y_t = \alpha_2 + \beta_2 + \beta_2$
 - Model 3 (Data sets 1 + 2): \[y_t = \alpha + \beta_1\times X_1 + \beta_2 \times X_2 + \cdots + \epsilon\]
- The Chow test hypothesis:

\[H_{o}= \left\{\begin{matrix} \alpha_1 = \alpha_2 = \alpha \\ \beta_{1,1} = \beta_{1,2} = \beta_1
\\ \beta_{2,1} = \beta_{2,2} = \beta_2 \end{matrix}\right. \] \(H_{1}: \exists \alpha_i \neq \alpha,
\exists \beta_{i,j} \neq \beta_i\)

Where:

- $\circ \ (H_{o}) is the null hypothesis.$
- (H_{1}) is the alternate hypothesis.
- \(\beta_{i,j}\) is the i-th coefficient in the j-th regression model (j=1,2,3).
- The Chow statistics are defined as follows: \[\frac{(\mathrm{SSE}_C (\mathrm{SSE}_1+\mathrm{SSE}_2))/(k)}{(\mathrm{SSE}_1+\mathrm{SSE}_2)/(N_1+N_2-2k)}\]
 Where:
 - \(\mathrm{SSE}\) is the sum of the squared residuals.
 - \(K\) is the number of explanatory variables.
 - $\circ \ (N_1)$ is the number of non-missing observations in the first data set.
 - $\circ\ \(N_2\)$ is the number of non-missing observations in the second data set.
- The Chow test statistics follow an F-distribution with \(k\), and \(N_1+N_2-2\times K\) degrees
 of freedom.

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

Examples

int NDK_CHOWTEST(ref UIntPtr	XX1,	Namespace: NumXLAPI
UIntPtr	Μ,	Class: SFSDK
double[]	Y1,	Scope: Public
UIntPtr	N1,	Lifetime: Static
ref UIntPtr	XX2,	
double[]	Y2,	
UIntPtr	N2,	
Byte[]	mask,	
UIntPtr	nMaskLen,	
double	intercept,	
TEST_RETUR	N retType,	
ref double	retVal	
)		

Returns the p-value of the regression stability test (i.e. whether the coefficients in two linear regressions on different data sets are equal).

Returns

status code of the operation

Return values

NDK_SUCCESS	Operation successful
NDK_FAILED	Operation unsuccessful. See Macros for full list.

Parameters

[in] XX1	is the independent variables data matrix of the first data set (two dimensional).
[in] M	is the number of variables (columns) in XX1 and XX2.
[in] Y1	is the response or the dependent variable data array for the first data set (one

	dimensional array).			
[in] N1	is the number of observations (rows) in the first data set.			
[in] XX2	is the independent variables	s data	matrix of the second data s	et, such that each
	column represents one vari	able.		
[in] Y2	is the response or the depe	enden	t variable data array of the s	econd data set
	(one dimensional array).			
[in] N2	is the number of observation	ons (re	ows) in the second data set.	
[in] mask	is the boolean array to sele	ect a s	ubset of the input variables	in X. If NULL, all
	variables in X are included.			
[in] nMaskLer	en is the number of elements in the mask, which must be zero or equal to M.			
[in]intercept	is the regression constant or the intercept value (e.g. zero). If missing, an			
	intercept is not fixed and will be computed from the data set.			
[in] retType	is a switch to select the return output			
	Method V	/alue	Description	
	TEST_PVALUE	1	P-Value	
	TEST_SCORE	2	Test statistics (aka score)	
	TEST_CRITICALVALUE 3 Critical value.			
[in] retVal	is the calculated Chow test statistics.			

Remarks

- The data sets may include missing values.
- Each column in the explanatory (predictor) matrix corresponds to a separate variable.
- Each row in the explanatory matrix and corresponding dependent vector correspond to one observation.
- Observations (i.e. row) with missing values in X or Y are removed.
- Number of observation of each data set must be larger than the number of explanatory variables.
- In principle, the Chow test constructs the following regression models:
 - Model 1 (Data set 1): \[y_t = \alpha_1 + \beta_{1,1}\times X_1 + \beta_{2,1}\times X_2 + \cdots + \epsilon\]
 - Model 2 (Data set 2): $[y_t = \alpha_2 + \beta_2 + \beta_2$
 - Model 3 (Data sets 1 + 2): \[y_t = \alpha + \beta_1\times X_1 + \beta_2 \times X_2 + \cdots + \epsilon\]
- The Chow test hypothesis:

\[H_{o}= \left\{\begin{matrix} \alpha_1 = \alpha_2 = \alpha \\ \beta_{1,1} = \beta_{1,2} = \beta_1
\\ \beta_{2,1} = \beta_{2,2} = \beta_2 \end{matrix}\right. \] \(H_{1}: \exists \alpha_i \neq \alpha,
\exists \beta_{i,j} \neq \beta_i\)

Where:

- $\circ \ (H_{o}) is the null hypothesis.$
- \(H_{1}\) is the alternate hypothesis.
- \(\beta_{i,j}\) is the i-th coefficient in the j-th regression model (j=1,2,3).

- The Chow statistics are defined as follows: \[\frac{(\mathrm{SSE}_C (\mathrm{SSE}_1+\mathrm{SSE}_2))/(k)}{(\mathrm{SSE}_1+\mathrm{SSE}_2)/(N_1+N_2-2k)}\] Where:
 - \(\mathrm{SSE}\) is the sum of the squared residuals.
 - \(K\) is the number of explanatory variables.
 - (N_1) is the number of non-missing observations in the first data set.
 - $\circ \ (N_2)$ is the number of non-missing observations in the second data set.
- The Chow test statistics follow an F-distribution with \(k\), and \(N_1+N_2-2\times K\) degrees
 of freedom.

Exceptions

Exception Type	Condition
None	N/A

Requirements

Namespace	NumXLAPI
Class	SFSDK
Scope	Public
Lifetime	Static
Package	NumXLAPI.DLL

Examples

References

Hamilton, J .D.; Time Series Analysis, Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]