NDK ARMA FITTED

Last Modified on 07/08/2016 9:46 am CDT

- C/C++
- .Net

```
int stdcall NDK ARMA FITTED(double *
                                                 pData,
                               size_t
                                                 nSize,
                               double
                                                 mean,
                               double
                                                 sigma,
                               double *
                                                 phis,
                               size_t
                                                 p,
                               double *
                                                 thetas,
                               size_t
                               FIT_RETVAL_FUNC retType
```

Returns an array of cells for the fitted values (i.e. mean, volatility and residuals)

Returns

status code of the operation

Return values

NDK_SUCCESS Operation successful

NDK_FAILED Operation unsuccessful. See Macros for full list.

Parameters

[in,out	DData	is the univariate time series data (a one dimensional array).
[in]	nSize	is the number of observations in pData.
[in]	mean	is the ARMA model mean (i.e. mu).
[in]	sigma	is the standard deviation of the model's residuals/innovations.
[in]	phis	are the parameters of the AR(p) component model (starting with the lowest
		lag).
[in]	р	is the number of elements in phis (order of AR component)
[in]	thetas	are the parameters of the MA(q) component model (starting with the lowest
		lag).
[in]	q	is the number of elements in thetas (order of MA component)
[in]	retType is a switch to select a output type	
		Outline Branch Mark

Order Description

1	Fitted mean (default)
2	Fitted standard deviation or volatility
3	Raw (non-standardized) residuals
4	Standardized residuals

Remarks

- 1. The underlying model is described **here**.
- 2. The time series is homogeneous or equally spaced.
- 3. The time series may include missing values (e.g. NaN) at either end.
- 4. The long-run mean can take any value or be omitted, in which case a zero value is assumed.
- 5. The residuals/innovations standard deviation (sigma) must be greater than zero.
- 6. For the input argument phi:
 - The input argument is optional and can be omitted, in which case no AR component is included.
 - The order of the parameters starts with the lowest lag.
 - One or more parameters may have missing value or an error code (i.e. #NUM!, #VALUE!, etc.).
 - The order of the AR component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).
- 7. For the input argument theta:
 - The input argument is optional and can be omitted, in which case no MA component is included.
 - The order of the parameters starts with the lowest lag.
 - One or more values in the input argument can be missing or an error code (i.e. #NUM!, #VALUE!, etc.).
 - The order of the MA component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).

Requirements

Header	SFSDK.H	
Library	SFSDK.LIB	
DLL	SFSDK.DLL	

Examples

int NDK_ARMA_FITTED(double[] pData,

UIntPtr nSize,
double mean,
double sigma,
short nIntegral,
double[] phis,
UIntPtr p,

Namespace: NumXLAPI
Class: SFSDK

Scope: Public Lifetime: Static

```
double[] thetas,
UIntPtr q,
short retType
)
```

Returns an array of cells for the fitted values (i.e. mean, volatility and residuals)

Return Value

a value from NDK RETCODE enumeration for the status of the call.

```
NDK_SUCCESS operation successful
```

Error Code

Parameters

```
[in, out] pData is the univariate time series data (a one dimensional array).
[in]
        nSize is the number of observations in pData.
[in]
        mean
                 is the ARMA model mean (i.e. mu).
[in]
                 is the standard deviation of the model's residuals/innovations.
         sigma
[in]
         phis
                 are the parameters of the AR(p) component model (starting with the lowest
                 lag).
[in]
                 is the number of elements in phis (order of AR component)
[in]
        thetas are the parameters of the MA(q) component model (starting with the lowest
[in]
                 is the number of elements in thetas (order of MA component)
[in]
        retType is a switch to select a output type
                    Order Description
```

1	Fitted mean (default)
2	Fitted standard deviation or volatility
3	Raw (non-standardized) residuals
4	Standardized residuals

Remarks

- 1. The underlying model is described here.
- 2. The time series is homogeneous or equally spaced.
- 3. The time series may include missing values (e.g. NaN) at either end.
- 4. The long-run mean can take any value or be omitted, in which case a zero value is assumed.
- 5. The residuals/innovations standard deviation (sigma) must be greater than zero.
- 6. For the input argument phi:
 - The input argument is optional and can be omitted, in which case no AR component is included.
 - The order of the parameters starts with the lowest lag.
 - One or more parameters may have missing value or an error code (i.e. #NUM!, #VALUE!, etc.).
 - The order of the AR component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).

- 7. For the input argument theta:
 - The input argument is optional and can be omitted, in which case no MA component is included.
 - The order of the parameters starts with the lowest lag.
 - One or more values in the input argument can be missing or an error code (i.e. #NUM!, #VALUE!, etc.).
 - The order of the MA component model is solely determined by the order of the last value in the array with a numeric value (vs. missing or error).

Exceptions

Exception Type	Condition
None	N/A

Requirements

Namespace	NumXLAPI
Class	SFSDK
Scope	Public
Lifetime	Static
Package	NumXLAPI.DLL

References

Hamilton, J.D.; Time Series Analysis, Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]