NDK_AIRLINE_SIM

Last Modified on 07/11/2016 11:28 am CDT

- C/C++
- .Net

```
int __stdcall NDK_AIRLINE_SIM(double * pData,
size_t nSize,
double mean,
double sigma,
WORD S,
double theta,
double theta2,
UINT nSeed,
double * retArray,
size_t nSteps
)
```

Returns an array of cells for the simulated values.

Returns

status code of the operation

Return values

NDK_SUCCESSOperation successfulNDK_FAILEDOperation unsuccessful. See Macros for full list.

Parameters

- [in] **pData** is a univariate time series of the initial values (a one dimensional array).
- [in] **nSize** is the number of observations in pData.
- [in] **mean** is the model mean (i.e. mu).
- [in] **sigma** is the standard deviation of the model's residuals/innovations.
- [in] **S** is the length of seasonality (expressed in terms of lags, where s > 1).
- [in] **theta** is the coefficient of first-lagged innovation (see model description).
- [in] **theta2** is the coefficient of s-lagged innovation (see model description).
- [in] **nSeed** is an unsigned integer for setting up the random number generators
- [out] retArray is the calculated simulation value
- $[{\tt in}]$ <code>nSteps</code> is the number of future steps to simulate for.

Remarks

- 1. The underlying model is described here.
- 2. The time series is homogeneous or equally spaced
- 3. The time series may include missing values (e.g. NaN) at either end.
- 4. NDK_ARMA_SIM returns an array of one simulation path starting from the end of the input data.

- 5. The input data argument (i.e. latest observations) is optional. If ommitted, an array of zeroes is assumed.
- 6. The time series is homogeneous or equally spaced.
- 7. The time series may include missing values (e.g. NaN) at either end.
- 8. The long-run mean argument (mean) can take any value or be omitted, in which case a zero value is assumed.
- 9. The value of the residuals/innovations standard deviation (sigma) must be positive.
- 10. The season length must be greater than one.
- 11. The input argument for the non-seasonal MA parameter theta is optional and can be omitted, in which case no non-seasonal MA component is included.
- 12. The input argument for the seasonal MA parameter theta2 is optional and can be omitted, in which case no seasonal MA component is included.

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

Examples

int NDK_AIRLINE_SIM(double[]	Namespace: NumXLAPI
UIntPtr nSize,	Class: SFSDK
double mean,	Scope: Public
double sigma,	Lifetime: Static
short dSeason,	
double theta,	
double theta2,	
int nSeed,	
double[] retVal,	
UIntPtr nSteps	
)	

Returns an array of cells for the simulated values.

Return Value

a value from NDK_RETCODE enumeration for the status of the call.

NDK_SUCCESS operation successful

Error Error Code

Parameters

- [in] **pData** is a univariate time series of the initial values (a one dimensional array).
- [in] **nSize** is the number of observations in pData.
- [in] **mean** is the model mean (i.e. mu).
- [in] **sigma** is the standard deviation of the model's residuals/innovations.
- [in] **dSeason** is the length of seasonality (expressed in terms of lags, where s > 1).
- [in] **theta** is the coefficient of first-lagged innovation (see model description).
- [in] **theta2** is the coefficient of s-lagged innovation (see model description).
- [in] **nSeed** is an unsigned integer for setting up the random number generators
- [out] retVal is the calculated simulation value
- $\ensuremath{\left[\text{in} \right]}$ nSteps is the number of future steps to simulate for.

Remarks

- 1. The underlying model is described here.
- 2. The time series is homogeneous or equally spaced
- 3. The time series may include missing values (e.g. NaN) at either end.
- 4. NDK_ARMA_SIM returns an array of one simulation path starting from the end of the input data.
- 5. The input data argument (i.e. latest observations) is optional. If ommitted, an array of zeroes is assumed.
- 6. The time series is homogeneous or equally spaced.
- 7. The time series may include missing values (e.g. NaN) at either end.
- 8. The long-run mean argument (mean) can take any value or be omitted, in which case a zero value is assumed.
- 9. The value of the residuals/innovations standard deviation (sigma) must be positive.
- 10. The season length must be greater than one.
- 11. The input argument for the non-seasonal MA parameter theta is optional and can be omitted, in which case no non-seasonal MA component is included.
- 12. The input argument for the seasonal MA parameter theta2 is optional and can be omitted, in which case no seasonal MA component is included.

Exceptions

Exception Type	Condition
None	N/A

Requirements

Namespace	NumXLAPI
Class	SFSDK
Scope	Public
Lifetime	Static
Package	NumXLAPI.DLL

Examples

References

Hamilton, J .D.; Time Series Analysis, Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]