NDK AIRLINE FITTED

Last Modified on 07/11/2016 11:14 am CDT

- C/C++
- .Net

Returns an array of cells for the fitted values (i.e. mean, volatility and residuals)

Returns

status code of the operation

Return values

NDK_SUCCESS Operation successful

NDK FAILED Operation unsuccessful. See Macros for full list.

Parameters

[in] **pData** is the univariate time series data (a one dimensional array).

[in] **nSize** is the number of observations in pData.

[in] **mean** is the model mean (i.e. mu).

[in] **sigma** is the standard deviation of the model's residuals/innovations.

[in] is the length of seasonality (expressed in terms of lags, where s > 1).

[in]theta is the coefficient of first-lagged innovation (see model description).

[in] theta2 is the coefficient of s-lagged innovation (see model description).

[in]retTypeis a switch to select a output type

Order Description

- 1 Fitted mean (default)
- 2 Fitted standard deviation or volatility
- 3 Raw (non-standardized) residuals
- 4 Standardized residuals

Remarks

- 1. The underlying model is described here.
- 2. The time series is homogeneous or equally spaced
- 3. The time series may include missing values (e.g. NaN) at either end.

- 4. The long-run mean argument (mean) can take any value or be omitted, in which case a zero value is assumed.
- 5. The value of the residuals/innovations standard deviation (sigma) must be positive.
- 6. The season length must be greater than one.
- 7. The input argument for the non-seasonal MA parameter theta is optional and can be omitted, in which case no non-seasonal MA component is included.
- 8. The input argument for the seasonal MA parameter theta2 is optional and can be omitted, in which case no seasonal MA component is included.

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

Examples

```
Namespace: NumXLAPI
NDK_AIRLINE_FITTED(double[]
                                      pData,
                                                                          Class: SFSDK
                     UIntPtr
                                      nSize,
                                                                         Scope: Public
                     double
                                      mean,
                                                                       Lifetime: Static
                     double
                                      sigma,
                     short
                                      dSeason,
                     double
                                      theta,
                     double
                                      theta2,
                     FIT RETVAL FUNCretType
```

Returns an array of cells for the fitted values (i.e. mean, volatility and residuals)

Return Value

a value from NDK_RETCODE enumeration for the status of the call.

NDK_SUCCESS operation successful

Error Code

Parameters

[in] **pData** is the univariate time series data (a one dimensional array).

[in] **nSize** is the number of observations in pData.

[in] **mean** is the model mean (i.e. mu).

[in] **sigma** is the standard deviation of the model's residuals/innovations.

[in] **dSeason** is the length of seasonality (expressed in terms of lags, where s > 1).

[in] **theta** is the coefficient of first-lagged innovation (see model description).

[in] **theta2** is the coefficient of s-lagged innovation (see model description).

[in] retType is a switch to select a output type

Order Description

- 1 Fitted mean (default)
- 2 Fitted standard deviation or volatility
- 3 Raw (non-standardized) residuals
- 4 Standardized residuals

Remarks

- 1. The underlying model is described here.
- 2. The time series is homogeneous or equally spaced
- 3. The time series may include missing values (e.g. NaN) at either end.
- 4. The long-run mean argument (mean) can take any value or be omitted, in which case a zero value is assumed.
- 5. The value of the residuals/innovations standard deviation (sigma) must be positive.
- 6. The season length must be greater than one.
- 7. The input argument for the non-seasonal MA parameter theta is optional and can be omitted, in which case no non-seasonal MA component is included.
- 8. The input argument for the seasonal MA parameter theta2 is optional and can be omitted, in which case no seasonal MA component is included.

Exceptions

Exception Type	Condition
None	N/A

Requirements

Namespace	NumXLAPI
Class	SFSDK
Scope	Public
Lifetime	Static

	Package	NumXLAPI.DLL
Examples		

References

Hamilton, J.D.; Time Series Analysis, Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]