NDK_ADFTEST

Last Modified on 01/09/20179:33 pm CST

- C/C++
- .Net

intstdcall NDK_ADFTEST(dou	ble *	Χ,
size	e_t	Ν,
WO	RD	Κ,
WO	RD	options,
BOO	OL	testDown,
dou	ble	alpha,
WO	RD	method,
WO	RD	retType,
dou	ble *	retVal
)		

Returns the p-value of the Augmented Dickey-Fuller (ADF) test, which tests for a unit root in the time series sample.

Returns

status code of the operation

Return values

NDK_SUCCESSOperation successful NDK_FAILED Operation unsuccessful. See <u>Macros</u> for full list.

Parameters

[in]	X	is the univariate time series data (a one dimensional array).			
[in]	Ν	is the number of observations in X.			
[in]	κ	is the lag length of the autoregressive process. If missing, an initial value equal			
		to the cubic root of the inp	out data	a size is used.	
[in]	options	is the model description flag for the Dickey-Fuller test variant (1=no constant,			
		2=contant-only, 3=trend only, 4=constant and trend, 5=const, trend and trend			
		squared).			
[in]	testDow	Down is the mode of testing. If set to TRUE (default), ADFTest performs a series of			
		tests. The test starts with the input length lag, but the actual length lag order			
		used is obtained by testing down.			
[in]	alpha	is the statistical significance level. If missing, a default of 5% is assumed.			
[in]	method	is the statistical test to perform (1=ADF).			
[in]	retType	is a switch to select the return output:			
		Method	Value	Description	
		TEST_PVALUE	1	P-Value	
		TEST_SCORE	2	Test statistics (aka score)	
		TEST_CRITICALVALUE	3	Critical value.	

Remarks

1. The testing procedure for the ADF test is applied to the following model: $[\beta_y_t = \appha + \beta_1 t + \beta_2 t^2 + \gamma y_{t-1} + \phi_1 \beta y_{t-1} + \cdots + \phi_{p-1} \beta y_{t-p+1} + \cdots + \phi_{p-1} \beta y_{t-p+1} + \cdots + \beta y_{t-p+1} + \beta y_{t-p$

Where:

- \(\Delta \) is the first different operator
- \(\alpha \) is a constant
- \(\beta_1 \) is the coefficient on a time trend
- \(\beta_2 \) is the coefficient on a squared time trend

2. This model can be estimated, and testing for a unit root is equivalent to testing that \(\gamma = 0\).

3. In sum, the Augmented Dickey-Fuller Test in Excel test hypothesis is as follows: $[H_{0}: gamma = 0] [H_{1}: gamma < 0]$ Where:

- \(H_{o}\) is the null hypothesis (i.e. \(y_t\) has a unit-root)
- (H_{1}) is the alternate hypothesis (i.e. (y_t) does not have a unit-root)

4. The test statistics (\(\tau\)) value is calculated as follows: \[\tau = \frac{\hat{\gamma}} {\sigma_{\hat\gamma}}\]

where:

- \(\hat{\gamma}\) is the estimated coefficient
- \(\sigma_{\hat\gamma}\) is the standard error in the coefficient estimate

5. The test statistics value (\(\tau\)) is compared to the relevant critical value for the Dickey-Fuller Test. If the test statistic is less than the critical value, we reject the null hypothesis and conclude that no unit-root is present.

6. The ADFTest does not directly test for stationarity, but indirectly through the existence (or absence) of a unit-root. Furthermore, Augmented Dickey-Fuller Test in Excel incorporates a deterministic trend (and trend squared), so it allows a trend-stationary process to occur.
7. The main difference between the ADFTest and a normal Dickey Fuller test is that ADFTest allows for higher-order autoregressive processes.

8. For the test-down approach, we start with a given maximum lag length and test down by running several tests; in each, we exaimine the high-order coefficients t-stat for significance.

9. It is not possible to use a standard t-distribution to provide critical values for this test. Therefore this test statistic (i.e. \(\tau\)) has a specific distribution simply known as the Dickey's-Fuller table.

10. The time series must have at least 10, and no more than 10,000 non-missing observations.

11. The time series is homogeneous or equally spaced.

12. The time series may include missing values (e.g. NaN) at either end.

Requirements

Header	SFSDK.H
Library	SFSDK.LIB
DLL	SFSDK.DLL

Examples

```
// (optional) NaN : quiet NaN (Not-A-Number) value of type double (initialization
)
const double NAN = std::numeric limits::quiet NaN();
. . . .
double data[100] = {-2.213600965, 0.205653805, 0.536560947, ...};
WORD maxOrder=5;
double alpha = 0.05;
WORD method=1;
double fValue = NAN;
// Scenario: No deterministic component
nRet = NDK ADFTEST(
        data, // is the univariate time series data (a one dimensional array)
        100, // is the number of observations
                         // is the lag length of the autoregressive process.
       maxOrder,
        ADFTEST DRIFT ONLY, // Model 1: A stochastic drift
        TRUE, // is the mode of testing
        alpha, // is the statistical significance level
        1, // is the statistical test to perform (1=ADF).
        TEST PVALUE, // is a switch to select the return output
        &fValue
                       // is the calculated test statistics
                 );
if( nRet >= NDK SUCCESS)
 double fScore = NAN;
 double fCriticalVal = NAN;
 NDK ADFTEST (data, 100, maxOrder, ADFTEST DRIFT ONLY, TRUE, alpha, 1, TEST SCORE
, &fValue);
  NDK ADFTEST (data, 100, maxOrder, ADFTEST DRIFT ONLY, TRUE, alpha, 1, TEST CRITI
```

```
CALVALUE, &fValue);
}
// Scenario 2: A deterministic constant and stochastic drift
fValue = NAN;
nRet = NDK ADFTEST(
       data, // is the univariate time series data (a one dimensional array)
       100, // is the number of observations
       maxOrder, // is the lag length of the autoregressive process.
       ADFTEST DRIFT N CONST, // Model II: A deterministic constant and stochast
ic drift
       TRUE, // is the mode of testing
       alpha, // is the statistical significance level
       1, // is the statistical test to perform (1=ADF).
       TEST_PVALUE, // is a switch to select the return output
       &fValue
                       // is the calculated test statistics
       );
// Scenario 3: A deterministic trend and stochastic drift
fValue = NAN;
nRet = NDK ADFTEST(
       data, // is the univariate time series data (a one dimensional array)
       100, // is the number of observations
       maxOrder,
                        // is the lag length of the autoregressive process.
       ADFTEST DRIFT N TREND, // Model III: A deterministic trend and stochastic
drift
       TRUE, // is the mode of testing
       alpha, // is the statistical significance level
       1, // is the statistical test to perform (1=ADF).
       TEST PVALUE, // is a switch to select the return output
       &fValue
                       // is the calculated test statistics
       );
// Scenario 4: A deterministic constant, trend and stochastic drift
fValue = NAN;
nRet = NDK ADFTEST (
       data, // is the univariate time series data (a one dimensional array)
       100, // is the number of observations
       maxOrder, // is the lag length of the autoregressive process.
       ADFTEST DRIFT N CONST N TREND, // Model IV: A deterministic constant, tre
nd and stochastic drift
       TRUE, // is the mode of testing
       alpha, // is the statistical significance level
       1. // is the statistical test to perform (1=ADF).
```

- ,	, ,		
TES	ST_PVALUE,	$\ensuremath{{\prime}{\prime}}$ is a switch to select the return	output
&fV	Value	// is the calculated test statistics	
);			
			Namespace: NumXLAPI

int NDK_ADFTEST	(double[]	pData,
	UIntPtr	nSize,
	UInt16	maxOrder,
	UInt16	option,
	BOOL	testDown,
	double	alpha,
	UInt16	argMethod,
	UInt16	retType,
	out double	retVal
)	

Namespace: NumXLAP Class: SFSDK Scope: Public Lifetime: Static

Returns the p-value of the Augmented Dickey-Fuller (ADF) test, which tests for a unit root in the time series sample.

Return Value

a value from NDK_RETCODE enumeration for the status of the call.

NDK_SUCCESS operation successful

Error Error Code

Parameters

- [in] **pData** is the univariate time series data (a one dimensional array).
- [in] **nSize** is the number of observations in pData.
- [in] **maxOrder** is the lag length of the autoregressive process. If missing, an initial value equal to the cubic root of the input data size is used.
- [in] option is the model description flag for the Dickey-Fuller test variant (1=no constant, 2=contant-only, 3=trend only, 4=constant and trend, 5=const, trend and trend squared).
- [in] **testDown** is the mode of testing. If set to TRUE (default), ADFTest performs a series of tests. The test starts with the input length lag, but the actual length lag order used is obtained by testing down.
- [in] **alpha** is the statistical significance level. If missing, a default of 5% is assumed.
- [in] argMethod is the statistical test to perform (1=ADF).
- [in] **retType** is a switch to select the return output:

	Method	Value	Description
	TEST_PVALUE	1	P-Value
	TEST_SCORE	2	Test statistics (aka score)
	TEST_CRITICALVALUE	3	Critical value.
[out]retVal	is the calculated test statistics.		

Remarks

1. The testing procedure for the ADF test is applied to the following model: \[\Delta y_t = \alpha + \beta_1 t + \beta_2 t^2 + \gamma y_{t-1} + \phi_1 \Delta y_{t-1} + \cdots + \phi_{p-1} \Delta y_{t-p+1} + \varepsilon_t\]

Where:

- \(\Delta \) is the first different operator
- \(\alpha \) is a constant
- \(\beta_1 \) is the coefficient on a time trend
- \(\beta_2 \) is the coefficient on a squared time trend

2. This model can be estimated, and testing for a unit root is equivalent to testing that \(\gamma = 0\).

3. In sum, the Augmented Dickey-Fuller Test in Excel test hypothesis is as follows: \[H_{o}: \gamma = 0\] \[H_{1}: \gamma < 0\]

Where:

- \(H_{o}\) is the null hypothesis (i.e. \(y_t\) has a unit-root)
- (H_{1}) is the alternate hypothesis (i.e. (y_t) does not have a unit-root)

4. The test statistics (\(\tau\)) value is calculated as follows: \[\tau = \frac{\hat{\gamma}} {\sigma_{\hat\gamma}}\]

where:

- \(\hat{\gamma}\) is the estimated coefficient
- \(\sigma_{\hat\gamma}\) is the standard error in the coefficient estimate

5. The test statistics value (\(\tau\)) is compared to the relevant critical value for the Dickey-Fuller Test. If the test statistic is less than the critical value, we reject the null hypothesis and conclude that no unit-root is present.

6. The ADFTest does not directly test for stationarity, but indirectly through the existence (or absence) of a unit-root. Furthermore, Augmented Dickey-Fuller Test in Excel incorporates a deterministic trend (and trend squared), so it allows a trend-stationary process to occur.

7. The main difference between the ADFTest and a normal Dickey Fuller test is that ADFTest allows for higher-order autoregressive processes.

8. For the test-down approach, we start with a given maximum lag length and test down by running several tests; in each, we exaimine the high-order coefficient's t-stat for significance.
9. It is not possible to use a standard t-distribution to provide critical values for this test.
Therefore this test statistic (i.e. \(\tau\)) has a specific distribution simply known as the Dickey's-Fuller table.

- 10. The time series must have at least 10, and no more than 10,000 non-missing observations.
- 11. The time series is homogeneous or equally spaced.
- 12. The time series may include missing values (e.g. NaN) at either end.

Exceptions

Exception Type	Condition
None	N/A

Requirements

Namespace	NumXLAPI
Class	SFSDK
Scope	Public
Lifetime	Static
Package	NumXLAPI.DLL

Examples

References

Hull, John C.; Options, Futures and Other Derivatives Financial Times/ Prentice Hall (2011), ISBN 978-0132777421

Hamilton, J.D.; Time Series Analysis, Princeton University Press (1994), ISBN 0-691-04289-6 Tsay, Ruey S.; Analysis of Financial Time Series John Wiley & SONS. (2005), ISBN 0-471-690740

See Also

[template("related")]